

IBM C1000-112

IBM Quantum Developer Certification Questions & Answers

Exam Summary – Syllabus –Questions

C1000-112 <u>IBM Certified Associate Developer - Quantum Computation using Qiskit v0.2X</u> 60 Questions Exam – 73% Cut Score – Duration of 90 minutes

Table of Contents:

Know Your C1000-112 Certification Well:	2
IBM C1000-112 Quantum Developer Certification Detail	s:2
C1000-112 Syllabus:	3
IBM C1000-112 Sample Questions:	4
Study Guide to Crack IBM Quantum Developer C1000- 112 Exam:	7

Know Your C1000-112 Certification Well:

The C1000-112 is best suitable for candidates who want to gain knowledge in the IBM Associate Developer. Before you start your C1000-112 preparation you may struggle to get all the crucial Quantum Developer materials like C1000-112 syllabus, sample questions, study guide.

But don't worry the C1000-112 PDF is here to help you prepare in a stress free manner.

The PDF is a combination of all your queries like-

- What is in the C1000-112 syllabus?
- How many questions are there in the C1000-112 exam?
- Which Practice test would help me to pass the C1000-112 exam at the first attempt?

Passing the C1000-112 exam makes you IBM Certified Associate Developer -Quantum Computation using Qiskit v0.2X. Having the Quantum Developer certification opens multiple opportunities for you. You can grab a new job, get a higher salary or simply get recognition within your current organization.

IBM C1000-112 Quantum Developer Certification Details:

	IBM Certified Associate Developer - Quantum Computation
	using Qiskit v0.2X
Exam Code	C1000-112
Exam Price	\$200 (USD)
Duration	90 mins
Number of Questions	60
Passing Score	73%
Books / Training	Qiskit Developer Certification Syllabus, Study Guide
Schedule Exam	Pearson VUE
Sample Questions	IBM Quantum Developer Sample Questions
Practice Exam	IBM C1000-112 Certification Practice Exam

C1000-112 Syllabus:

Торіс	Details	Weights
Perform Operations on Quantum Circuits	 Construct multi-qubit quantum registers Measure quantum circuits in classical registers Use single-qubit gates Use multi-qubit gates Use barrier operations Return the circuit depth Extend quantum circuits Return the OpenQASM string for a circuit 	47%
Executing Experiments	- Execute a quantum circuit	3%
Implement BasicAer: Python-based Simulators	- Use the available simulators	3%
Implement Qasm	- Read a QASM file and string	1%
Compare and Contrast Quantum Information	 Use classical and quantum registers Use operators Measure fidelity 	10%
Return the Experiment Results	 Return and understand the histogram data of an experiment Return and understand the statevector of an experiment Return and understand the unitary of an experiment 	7%
Use Qiskit Tools	- Monitor the status of a job instance	1%
Display and Use System Information	 Perform operations around the Qiskit version Use information gained from %quiskit_backend_overview 	3%
Construct Visualizations	 Draw a circuit Plot a histogram of data Plot a Bloch multivector Plot a Bloch vector Plot a QSphere Plot a density matrix Plot a gate map with error rates 	19%
Access Aer Provider	 Access a statevector_simulator backend Access a qasm_simulator backend Access a unitary_simulator backend 	6%

IBM C1000-112 Sample Questions:

```
Question: 1
```

Which two options would place a barrier across all qubits to the QuantumCircuit below?

qc = QuantumCircuit(3,3)

- a) qc.barrier(qc)
- b) qc.barrier([0,1,2])
- c) qc.barrier()
- d) qc.barrier(3)
- e) qc.barrier_all()

Answer: b, c

Question: 2

What would be the fidelity result(s) for these two operators, which differ only by global phase?

op_a = Operator(XGate())

op_b = numpy.exp(1j * 0.5) * Operator(XGate())

- a) state_fidelity() of 1.0
- b) state_fidelity() and average_gate_fidelity() of 1.0
- c) average_gate_fidelity() and process_fidelity() of 1.0
- d) state_fidelity(), average_gate_fidelity() and process_fidelity() of 1.0

Answer: c

Question: 3

Given this code fragment, what is the probability that a measurement would result in |0>?

```
qc = QuantumCircuit(1)
```

qc.ry(3 * math.pi/4, 0)

- a) 0.8536
- b) 0.5
- c) 0.1464
- d) 1.0

Answer: c

Question: 4

Which code fragment will produce a maximally entangled, or Bell, state?

- a) bell = QuantumCircuit(2) bell.h(0) bell.x(1) bell.cx(0, 1)
- b) bell = QuantumCircuit(2) bell.cx(0, 1)
 - bell.h(0)
 - bell.x(1)
- c) bell = QuantumCircuit(2)
 bell.h(0)
 - bell.x(1)
 - bell.cz(0, 1)
- d) bell = QuantumCircuit(2)
 bell.h(0)
 bell.h(0)

Answer: a

Question: 5

Which code fragment would yield an operator that represents a single-qubit X gate?

- a) op = Operator.Xop(0)
- b) qc = QuantumCircuit(1)
- e) qc.x(0)
- f) op = Operator(qc)
- c) op = Operator([[0,1]])
- d) op = Operator([[1,0,0,1]])

Answer: b

Question: 6

Which line of code would assign a statevector simulator object to the variable backend?

- a) backend = BasicAer.StatevectorSimulatorPy()
- b) backend = BasicAer.get_backend('statevector_simulator')
- c) backend = BasicAer.StatevectorSimulatorPy().name()
- d) backend = BasicAer.get_back('statevector_simulator')

Answer: b

Question: 7

Which statement will create a quantum circuit with four quantum bits and four classical bits?

- a) QuantumCircuit(4, 4)
- b) QuantumCircuit(4)
- c) QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(4, 'cr1'))
- d) QuantumCircuit([4, 4])

Answer: a

Question: 8

Which three simulators are available in BasicAer?

- a) qasm_simulator
- b) basic_qasm_simulator
- c) statevector_simulator
- d) unitary_simulator
- e) quantum_simulator
- f) quantum_circuit_simulator

Answer: a, c, d

Question: 9

Which code fragment will produce a multi-qubit gate other than a CNOT?

- a) qc.cx(0,1)
- b) qc.cnot(0,1)
- c) qc.mct([0],1)
- d) qc.cz(0,1)

Answer: d

Question: 10

S-gate is a Qiskit phase gate with what value of the phase parameter?

- a) π/8
- b) π/4
- с) п
- d) π/2

Answer: d

Study Guide to Crack IBM Quantum Developer C1000-112 Exam:

- Getting details of the C1000-112 syllabus, is the first step of a study plan. This pdf is going to be of ultimate help. Completion of the syllabus is must to pass the C1000-112 exam.
- Making a schedule is vital. A structured method of preparation leads to success. A candidate must plan his schedule and follow it rigorously to attain success.
- Joining the IBM provided training for C1000-112 exam could be of much help. If there is specific training for the exam, you can discover it from the link above.
- Read from the C1000-112 sample questions to gain your idea about the actual exam questions. In this PDF useful sample questions are provided to make your exam preparation easy.
- Practicing on C1000-112 practice tests is must. Continuous practice will make you an expert in all syllabus areas.

Reliable Online Practice Test for C1000-112 Certification

Make EduSum.com your best friend during your IBM Fundamentals of Quantum Computation Using Qiskit v0.2X Developer exam preparation. We provide authentic practice tests for the C1000-112 exam. Experts design these online practice tests, so we can offer you an exclusive experience of taking the actual C1000-112 exam. We guarantee you 100% success in your first exam attempt if you continue practicing regularly. Don't bother if you don't get 100% marks in initial practice exam attempts. Just utilize the result section to know your strengths and weaknesses and prepare according to that until you get 100% with our practice tests. Our evaluation makes you confident, and you can score high in the C1000-112 exam.

Start Online practice of C1000-112 Exam by visiting URL https://www.edusum.com/ibm/c1000-112-ibm-fundamentals-quantumcomputation-using-qiskit-v0-2x-developer