SAS A00-402 SAS MACHINE LEARNING CERTIFICATION QUESTIONS & ANSWERS Exam Summary - Syllabus - Questions A00-402 SAS Certified Specialist - Machine Learning Using SAS Viya 3.5 50-55 Questions Exam – 65% Cut Score – Duration of 100 minutes www.AnalyticsExam.Com ### **Table of Contents** | Know Your A00-402 Certification Well: | 2 | |--|---| | A00-402 SAS Machine Learning Certification Details: | 2 | | A00-402 Syllabus: | 3 | | Data Sources (30%) Building Models (50%) Model Assessment and Deployment (20%) | 4 | | SAS A00-402 Sample Questions: | Machine Learning Certification Details: 2 bus: | | Study Guide to Crack SAS Machine Learning A00-402 | | ### Know Your A00-402 Certification Well: The A00-402 is best suitable for candidates who want to gain knowledge in the SAS Advanced Analytics. Before you start your A00-402 preparation you may struggle to get all the crucial SAS Machine Learning materials like A00-402 syllabus, sample questions, study guide. But don't worry the A00-402 PDF is here to help you prepare in a stress free manner. The PDF is a combination of all your queries like- - What is in the A00-402 syllabus? - How many questions are there in the A00-402 exam? - Which Practice test would help me to pass the A00-402 exam at the first attempt? Passing the A00-402 exam makes you SAS Certified Specialist - Machine Learning Using SAS Viya 3.5. Having the SAS Machine Learning certification opens multiple opportunities for you. You can grab a new job, get a higher salary or simply get recognition within your current organization. # A00-402 SAS Machine Learning Certification Details: | Exam Name | SAS Certified Specialist - Machine Learning Using SAS Viya 3.5 | |-------------------|--| | Exam Code | A00-402 | | Exam Duration | 100 minutes | | Exam Questions | 50-55 | | Passing Score | 65% | | Exam Price | \$180 (USD) | | Training | Machine Learning Using SAS Viya | | Books | Machine Learning with SAS® Viya | | Exam Registration | Pearson VUE | | Sample Questions | SAS Machine Learning Certification Sample Question | | Practice Exam | SAS Machine Learning Certification Practice Exam | | | | ## A00-402 Syllabus: | Objective | Details | |---|--| | | Data Sources (30%) | | | - Bring data into Model Studio for analysis | | | Import data from a local source (Import tab) Add data from a stored data source (Data Sources tab) Use an in-memory data source (Available tab) Create Model Studio Pipelines with the New Pipeline window | | | Automatically generate pipelinesPipeline templates | | Create a project in
Model Studio | - Advanced Advisor options | | Explore the data | Maximum class level Maximum % missing Interval cut-off Partition data into training, validation, and test Explain why partitioning is important Explain the different methods to partition data (stratified vs simple random) Use Event Based Sampling to oversample for rare events. Use the DATA EXPLORATION node Profile data during data definition Preliminary data exploration using the data tab | | | - Save data with the SAVE DATA node | | Modify data | Modify metadata with the MANAGE VARIABLES node Use the REPLACEMENT node to update variable values Use the TRANSFORMATION node to correct problems with input data sources, such as variables distribution or outliers Use the IMPUTE node to impute missing values and create missing value indicators Modify data within the DATA tab | | Reduce the
dimensionality of
the data | Use the FEATURE EXTRACTION node Prepare text data for modeling with the TEXT MINING node | | Use the VARIABLE SELECTION node to identify important variables to be | Unsupervised Selection Fast Supervised Selection Linear Regression Selection Decision Tree Selection Forest Selection | | Objective | Details | |---|---| | included in a
predictive model | Gradient Boosting Selection Create Validation from Training Use multiple methods within the same VARIABLE SELECTION node. | | | Building Models (50%) | | Describe key
supervised
machine learning
terms and
concepts | Data partitioning: training, validation, test data sets Observations (cases), independent (input) variables/features, dependent (target) variables Measurement scales: Interval, ordinal, nominal (categorical), binary variables Prediction types: decisions, rankings, estimates Dimensionality, redundancy, irrelevancy Decision trees, neural networks, regression models Model optimization, overfitting, underfitting, model selection Describe ensemble models | | Build models with
decision trees and
ensemble of trees | Explain how decision trees identify split points Split search algorithm Recursive partitioning Decision tree algorithms Multiway vs. binary splits Impurity reduction Gini, entropy, Bonferroni, IRG, FTEST, variance Compare methods to grow decision trees for categorical vs continuous response variables Explain the effect of missing values on decision trees Explain surrogate rules Explain the purpose of pruning decision trees Explain bagging vs. boosting methods Build models with the DECISION TREE node Adjust splitting options Adjust pruning options Build models with the GRADIENT BOOSTING node Adjust general options: number of trees, learning rate, L1/L2 regularization rate Adjust Tree Splitting options Adjust early stopping Adjust autotuning Build models with the FOREST node Adjust number of trees | | Objective | Details | |---|--| | | Adjust autotuning | | | - Interpret decision tree, gradient boosting, and forest results (fit statistics, output, tree diagrams, tree maps, variable importance, error plots, autotuned results) | | | - Describe the characteristics of neural network models | | Build models with | Adaptive learning Universal approximation Neurons, hidden layers, perceptrons, multilayer perceptrons Weights and bias Activation functions Optimization Methods (LBFGS and Stochastic Gradient | | neural networks | Descent) • Variable standardization - Build models with the NEURAL NETWORK node | | | Adjust number of layers and neurons | | | Adjust optimization options and early stopping criterion Interpret NEURAL NETWORK node results (network diagram, iteration plots, and output) | | Build models with support vector machines | Describe the characteristics of support vector machines. Build model with the SVM node Adjust general properties (Kernel, Penalty, Tolerance) Perform Autotuning Interpret SVM node results (Output) | | Use Model
Interpretability
tools to explain
black box models | Partial Dependence plots Individual Conditional Expectation plots Local Interpretable Model-Agnostic Explanations plots Kernel-SHAP plots | | Incorporate
externally written
code | Open Source Code nodeSAS Code nodeScore Code Import node | | Model | Assessment and Deployment (20%) | | Explain the
principles of
Model Assessment | Explain different dimensions for model comparison Training speed Model application speed Tolerance | | Objective | Details | |---|--| | | Model clarity | | | - Explain honest assessment | | | Evaluate a model with a holdout data set | | | - Use the appropriate fit statistic for different prediction types | | | Average error for estimates | | | Misclassification for decisions | | Assess and compare models in Model Studio | Compare models with the MODEL COMPARISON node Compare models with the PIPELINE COMPARISON tab Interpret Fit Statistics, Lift Reports, ROC reports. | | Deploy a model | Exporting score codeRegistering a modelPublish a model | ## SAS A00-402 Sample Questions: #### **Question: 1** Which feature extraction method can take both interval variables and class variables as inputs? - a) Principal component analysis - b) Autoencoder - c) Singular value decomposition - d) Robust PCA Answer: b #### **Question: 2** As the number of input variables in a problem increases, there is an exponential increase in the number of observations needed to densely populate the feature space. This is referred to as: - a) Problem of rare events - b) Multicollinearity - c) Curse of Dimensionality - d) Underfitting Answer: c #### **Question: 3** What is another term for a feature in predictive modeling? - a) Instance - b) Input - c) Target - d) Outcome Answer: b #### **Question: 4** A project has been created and a pipeline has been run in Model Studio. Which project setting can you edit? - a) Advisor Options for missing values - b) Rules for model comparison statistic - c) Partition Data percentages - d) Event-based Sampling proportions Answer: b #### **Question: 5** #### Refer to the exhibit below Based on the output from the Data Exploration node shown in the exhibit, which variable has the most thin tails (most platykurtic distribution)? - a) Logi_rfm4 - b) Logi rfm6 - c) Logi_rfm8 - d) Logi_rfm12 Answer: d #### **Question: 6** Refer to the treemap shown in the exhibit below Which statement is true about the tree map for a decision tree with a binary target? - a) The top bar represents the node with the highest probability of event - b) The darker bars represent nodes with a lower probability of event. - c) The top bar represents the node with the highest count - d) The wider bars represent nodes with a higher probability of event. Answer: c #### **Question: 7** Which statement is true regarding decision trees and models based on ensembles of trees? - a) In the gradient boosting algorithm, for all but the first iteration, the target is the residual from the previous decision tree model. - b) For a Forest model, the out-of-bag sample is simply the original validation data set from when the raw data partitioning took place. - c) In the Forest algorithm, each individual tree is pruned based on using minimum Average Squared Error. - d) A single decision tree will always be outperformed by a model based on an ensemble of trees. Answer: a #### **Question: 8** In Model Studio, you have multiple pipelines in a project. Which statement is true? - a) The Model Comparison node compares only the champion models for each project. - b) The Pipeline Comparison tab compares all of the models from each pipeline. - c) You can override the champion in a Model Comparison node. - d) You can override the champion in a Pipeline Comparison tab. Answer: d #### **Question: 9** Given the following properties for a neural network model, which statement is true regrading hidden units in the model? The following SAS program is submitted: - a) There are no hidden units in the model - b) The number of hidden units is 1. - c) The number of hidden units is 50. - d) The number of hidden units is 26. Answer: d #### **Question: 10** Which statements are true for the F1 score? (Choose 2.) - a) F1 score is calculated based on a depth value - b) F1 score is calculated based on a cut off value - c) F1 score is applicable to a model with a binary target. - d) F1 score is applicable to a model with an interval target. Answer: b, c # Study Guide to Crack SAS Machine Learning A00-402 Exam: - Getting details of the A00-402 syllabus, is the first step of a study plan. This pdf is going to be of ultimate help. Completion of the syllabus is must to pass the A00-402 exam. - Making a schedule is vital. A structured method of preparation leads to success. A candidate must plan his schedule and follow it rigorously to attain success. - Joining the SAS provided training for A00-402 exam could be of much help. If there is specific training for the exam, you can discover it from the link above. - Read from the A00-402 sample questions to gain your idea about the actual exam questions. In this PDF useful sample questions are provided to make your exam preparation easy. - Practicing on A00-402 practice tests is must. Continuous practice will make you an expert in all syllabus areas. #### Reliable Online Practice Test for A00-402 Certification Make AnalyticsExam.Com your best friend during your SAS Machine Learning Specialist exam preparation. We provide authentic practice tests for the A00-402 exam. Experts design these online practice tests, so we can offer you an exclusive experience of taking the actual A00-402 exam. We guarantee you 100% success in your first exam attempt if you continue practicing regularly. Don't bother if you don't get 100% marks in initial practice exam attempts. Just utilize the result section to know your strengths and weaknesses and prepare according to that until you get 100% with our practice tests. Our evaluation makes you confident, and you can score high in the A00-402 exam. #### Start Online Practice of A00-402 Exam by Visiting URL https://www.analyticsexam.com/sas-certification/a00-402-sas-certified-specialist-machine-learning-using-sas-viya-35