

CIW 1D0-184

CIW AI Data Science Specialist Certification Questions & Answers

Exam Summary – Syllabus –Questions

1D0-184 <u>CIW AI Data Science Specialist</u> 54 Questions Exam – 74.07% Cut Score – Duration of 75 minutes

Table of Contents:

Know Your 1D0-184 Certification Well:	2
CIW 1D0-184 AI Data Science Specialist Certification Details:	2
1D0-184 Syllabus:	3
Domain 1: Data Science Overview Domain 2: Analysis Domain 3: Managing Data Domain 4: Professional Skills CIW 1D0-184 Sample Questions:	3 5 5
Study Guide to Crack CIW AI Data Science Specialist 1D0-184 Exam:	10

Know Your 1D0-184 Certification Well:

The 1D0-184 is best suitable for candidates who want to gain knowledge in the CIW Artificial Intelligence. Before you start your 1D0-184 preparation you may struggle to get all the crucial AI Data Science Specialist materials like 1D0-184 syllabus, sample questions, study guide.

But don't worry the 1D0-184 PDF is here to help you prepare in a stress free manner.

The PDF is a combination of all your queries like-

- What is in the 1D0-184 syllabus?
- How many questions are there in the 1D0-184 exam?
- Which Practice test would help me to pass the 1D0-184 exam at the first attempt?

Passing the 1D0-184 exam makes you CIW AI Data Science Specialist. Having the AI Data Science Specialist certification opens multiple opportunities for you. You can grab a new job, get a higher salary or simply get recognition within your current organization.

CIW 1D0-184 AI Data Science Specialist Certification Details:

Exam Name	CIW AI Data Science Specialist
Exam Code	1D0-184
Exam Price	\$175 (USD)
Duration	75 mins
Number of Questions	54
Passing Score	74.07%
Schedule Exam	PSI Store
	CIW Shop
Sample Questions	CIW AI Data Science Specialist Sample Questions
Practice Exam	CIW 1D0-184 Certification Practice Exam

1D0-184 Syllabus:

Торіс	Details	
Domain 1: Data Science Overview		
Fundamentals	 Define machine learning Explain data science applications for business Distinguish the difference between AI and data science List applications of data science Describe what is the purpose of data science? Explain what a correlation coefficient is and how it is calculated 	
Legal, Ethics and Privacy Considerations	 Explain societal impact of AI Explain the implications of biased predictions by data models Apply ethical reasoning in decision making scenarios Identify ethical guidelines to be applied in data science Discuss web security standards Explain data protection security methodologies Demonstrate risks associated with data privacy and integrity Demonstrate data collection security principles 	
Career	 Apply data evaluation and data modeling for business solutions Describe industries in need of data science Read scientific articles, conference papers, etc. to identify emerging analytic trends and technologies Learn about the latest developments in your professional field 	
Exploratory Data Analysis	 Use data mining techniques Explain clustering techniques and their use cases Conduct exploratory data analysis Explain how to capture properties of distributions (mean, variance, skewness, kurtosis) 	

Торіс	Details
	- Analyze sets of data using descriptive statistical
	methods
	 Construct frequency distributions
	- Create a visualization of one or two variables in order to
	understand the data better
	 Perform feature selection for supervised and
	unsupervised analysis
	 Explain curse of dimensionality
Modeling and Visualization Techniques	 Explain the difference between model underfitting and overfitting
	 Explain the different types of errors made by a predictive model
	 Apply dimensionality reduction techniques (e.g., PCA) for data visualization
	 Explain the difference between classification and
	regression
	- Identify different performance metrics for classification
	(accuracy, ROC curve, AUC, F1)
	 Analyze data using correlation and linear regression
	methods
	 Describe data analyzing techniques
	 Provide statistical and mathematical solutions
	 Explain linear models and generalized linear models Explain bias-variance trade off
	- Compare and contrast different model evaluation
	techniques and their pros and cons
	 Define causal inference and with which kind of data it can be performed
Statistics	- Explain importance of checking model assumptions
	before deciding on final model
	- Explain how to detect bias in a model
	- Explain how to evaluate success of model fitting
	- Describe statistical power and why it is important
	- Explain difference between parametric and non-
	parametric models
·	μ

Торіс	Details
	- Explain how to decide which performance metrics to use
	given a prediction problem
	 Explain how to create confidence intervals around
	estimations
	 Explain the difference between the frequentist and
	Bayesian approaches to probability
	- Explain the concept of hypothesis testing
	Domain 3: Managing Data
	- Develop data structures and data warehousing solutions
	- Explain how to analyze big datasets through distributed
	systems (e.g., Hadoop, MapReduce)
	- Write SQL queries to fetch the data
General Data	 List the different stages in the data cycle
Management	- Explain how to maintain a dataset through integration
Management	and scrubbing
	 Demonstrate data source attributes, benefits and
	collection strategies
	 Explain data selection criteria and procedures
	- Describe methods for acquiring data
	 Types of databases and query languages
Querying Databases	 Query languages strengths and weaknesses
	- Indexes and Query efficiency
	- Handle categorical variables
	- Explain missing value problem and handling strategies
Data Preparation	 Explain what outlier is and how an outlier detection
	process works
	- Demonstrate data preprocessing and normalization
	Domain 4: Professional Skills
	- Explain basic concepts about algorithm design such as
	computational complexity
Programming	- Program in R
	- Use matplotlib and/or seaborn to visualize data
	- Use Pandas to represent data

Торіс	Details
	- Use common machine learning packages
	- Write syntax for an analysis package (e.g., SPSS, SAS,
	R)
	- Program in Python
	- Solve statistical problems using programming languages
	- Design and conduct surveys, opinion polls, or other
	instruments to collect data
Conduct Research	- Perform an A/B test to decide of treatment effect
	- Describe training and testing datasets and their role in
	analysis and modeling
	- Provide technical support for existing reports, software,
Consulting	databases, dashboards, or other tools
	- Advise others on analytical techniques
	- Deliver oral or written presentations of the results of
	modeling and data analysis
	- Compile reports, charts, papers, presentations or white
Communicating	papers that describe and interpret findings of analyses
Results	- Prepare data visualizations to communicate complex
	results to non-statisticians
	 Describe how to interpret and report data analysis
	results
	- Maintain and update existing models using fresh data or
	to make new predictions
Deploy Models	- Choose a methodology for deploying machine learning
	models for applications
	- Develop scalable frameworks
	 Describe how to scale a data science solution
	 Identify problems that can be solved using machine
Problem Identification	learning models or data analyses
	 Identify business problems or management objectives
	that can be addressed through data analysis
	- Identify solutions to problems (staffing, marketing, etc.)
	using the results of data analysis

CIW 1D0-184 Sample Questions:

Question: 1

Which of these are ethical guidelines to be applied in data science?

- a) Using data without consent for research
- b) Transparency in how data models work
- c) Manipulating data to fit preconceived notions
- d) Sharing private data publicly for scrutiny

Answer: b

Question: 2

Which type of database is optimized for handling large volumes of unstructured data?

- a) Relational database
- b) NoSQL database
- c) Spreadsheet
- d) Paper-based database

Answer: b

Question: 3

What are common types of databases used in data management?

- a) Spreadsheets and Word documents
- b) Relational databases and NoSQL databases
- c) Physical filing systems
- d) Personal diaries

Answer: b

Question: 4

What are the strengths and weaknesses of query languages like SQL and NoSQL? (Choose two)

- a) SQL excels in structured data; NoSQL is better for unstructured data
- b) SQL is not suitable for any database operations
- c) NoSQL offers flexibility; SQL offers better consistency
- d) NoSQL cannot handle large datasets

Answer: a, c

Question: 5

Why is it important to understand the strengths and weaknesses of different query languages?

- a) To use only one language for all database types
- b) To avoid using query languages altogether
- c) To choose the appropriate language based on database and requirements
- d) To complicate the data retrieval process

Answer: c

Question: 6

Why is data normalization important in data preparation? (Choose two)

- a) To ensure that different scales of data do not impact the analysis
- b) To convert all data to the same value
- c) To create a uniform distribution across all variables
- d) To adjust values to a common scale without distorting differences in ranges

Answer: a, d

Question: 7

How do classification and regression differ in data analysis?

- a) Classification predicts categorical outcomes; regression predicts numerical outcomes
- b) They are essentially the same in all aspects
- c) Regression is used for visualizing data; classification is not
- d) Classification deals with numerical predictions only

Answer: a

Question: 8

How can data science benefit marketing strategies? (Choose two)

- a) Ignoring market research and customer data
- b) By predicting future trends and customer behaviors
- c) Assisting in targeted advertising and customer segmentation
- d) Solely relying on intuition without data analysis

Answer: b, c

Question: 9

What is the primary goal of applying statistical and mathematical solutions in data analysis?

- a) To make the analysis more complex and difficult to understand
- b) To use only one type of statistical method for all data sets
- c) To rely solely on guesswork and intuition
- d) To identify and interpret patterns and relationships in data

Answer: d

Question: 10

In the context of data analysis, what is the importance of understanding data distribution properties like mean and variance?

- a) To disregard the variability of data
- b) To gain insights into the central tendency and spread of data
- c) To represent data inaccurately
- d) To focus only on outliers

Answer: b

Study Guide to Crack CIW AI Data Science Specialist 1D0-184 Exam:

- Getting details of the 1D0-184 syllabus, is the first step of a study plan. This pdf is going to be of ultimate help. Completion of the syllabus is must to pass the 1D0-184 exam.
- Making a schedule is vital. A structured method of preparation leads to success. A candidate must plan his schedule and follow it rigorously to attain success.
- Joining the CIW provided training for 1D0-184 exam could be of much help. If there is specific training for the exam, you can discover it from the link above.
- Read from the 1D0-184 sample questions to gain your idea about the actual exam questions. In this PDF useful sample questions are provided to make your exam preparation easy.
- Practicing on 1D0-184 practice tests is must. Continuous practice will make you an expert in all syllabus areas.

Reliable Online Practice Test for 1D0-184 Certification

Make EduSum.com your best friend during your CIW AI Data Science Specialist exam preparation. We provide authentic practice tests for the 1D0-184 exam. Experts design these online practice tests, so we can offer you an exclusive experience of taking the actual 1D0-184 exam. We guarantee you 100% success in your first exam attempt if you continue practicing regularly. Don't bother if you don't get 100% marks in initial practice exam attempts. Just utilize the result section to know your strengths and weaknesses and prepare according to that until you get 100% with our practice tests. Our evaluation makes you confident, and you can score high in the 1D0-184 exam.

Start Online practice of 1D0-184 Exam by visiting URL https://www.edusum.com/ciw/1d0-184-ciw-ai-data-science-specialist