

CWNP CWNA-109

CWNP Wi-Fi Admin Certification Questions & Answers

Exam Summary – Syllabus – Questions

CWNA-109

<u>CWNP Certified Wireless Network Administrator</u>
60 Questions Exam – 70 Cut Score – Duration of 90 minutes

Table of Contents:

Know Your CWNA-109 Certification Well:	2
CWNP CWNA-109 Wi-Fi Admin Certification Details:	2
CWNA-109 Syllabus:	3
CWNP CWNA-109 Sample Questions:	8
Study Guide to Crack CWNP Wi-Fi Admin CWNA-109	
Exam:	.10

Know Your CWNA-109 Certification Well:

The CWNA-109 is best suitable for candidates who want to gain knowledge in the CWNP Wireless Network. Before you start your CWNA-109 preparation you may struggle to get all the crucial Wi-Fi Admin materials like CWNA-109 syllabus, sample questions, study guide.

But don't worry the CWNA-109 PDF is here to help you prepare in a stress free manner.

The PDF is a combination of all your queries like-

- What is in the CWNA-109 syllabus?
- How many questions are there in the CWNA-109 exam?
- Which Practice test would help me to pass the CWNA-109 exam at the first attempt?

Passing the CWNA-109 exam makes you CWNP Certified Wireless Network Administrator. Having the Wi-Fi Admin certification opens multiple opportunities for you. You can grab a new job, get a higher salary or simply get recognition within your current organization.

CWNP CWNA-109 Wi-Fi Admin Certification Details:

Exam Name	Wireless Network Administrator
Exam Code	CWNA-109
Exam Price	\$275 USD
Duration	90 minutes
Number of Questions	60
Passing Score	70
Recommended Training	CWNA Certification Self Study Kit Live Training Wireless Network Certification Class
Exam Registration	PEARSON VUE
Sample Questions	CWNP CWNA-109 Sample Questions
Practice Exam	CWNP Certified Wireless Network Administrator Practice Test

CWNA-109 Syllabus:

Section	Objectives	
Radio Frequency (RF) Technologies - 15%		
Define and explain the basic characteristics and behavior of RF	 Wavelength, frequency, amplitude, phase, sine waves RF propagation and coverage Reflection, refraction, diffraction, and scattering Multipath and RF interference Gain and loss Amplification Attenuation Absorption Voltage Standing Wave Ratio (VSWR) Return Loss Free Space Path Loss (FSPL) 	
Apply the basic concepts of RF mathematics and measurement	 Watt and milliWatt Decibel (dB) dBm and dBi Noise floor SNR RSSI dBm to mW conversion rules of 10 and 3 Equivalent Isotropically Radiated Power (EIRP) 	
Identify RF signal characteristics as they relate to antennas	 RF and physical line of sight and Fresnel zone clearance Beamwidths Passive gain Polarization Antenna diversity types Radio chains MIMO 	
Explain and apply the functionality of RF antennas, antenna systems, and accessories available	 Omni-directional antennas Semi-directional antennas Highly directional antennas Reading Azimuth and Elevation charts for different antenna types Antenna orientation RF cables and connectors Lightning arrestors and grounding rods/wires Enclosures, mounting and aesthetic concerns 	
WLAN Regulations and Standards - 20%		
Explain the roles of WLAN and networking industry organizations	- IEEE - Wi-Fi Alliance	

Section	Objectives	
	- IETF	
	- Regulatory domains and agencies	
Explain and apply the	- DSSS – 802.11	
various Physical Layer	- HR-DSSS – 802.11b	
(PHY) solutions of the	- OFDM – 802.11a	
IEEE 802.11-2020	- ERP – 802.11g	
standard and amendments	- Wi-Fi 4 - HT — 802.11n	
including supported	- Wi-Fi 5 - VHT – 802.11ac	
channel widths, spatial	- Wi-Fi 6 - HE - 802.11ax (2.4 and 5 GHz)	
streams, and data rates	- Wi-Fi 6E - HE - 802.11ax (6 GHz)	
	- DSSS	
Understanding spread	- OFDM	
spectrum technologies,	- OFDMA and Resource Units	
Modulation and Coding	- BPSK	
Schemes (MCS)	- QPSK	
	- QAM (16, 64, 256,1024)	
	- Primary channels	
Identify and analysis 000 44	- OBSS	
Identify and apply 802.11	- Adjacent overlapping and non-overlapping channels	
WLAN functional concepts	- Throughput vs. data rate	
	- Bandwidth	
Describe the OSI and	- Guard Interval	
TCP/IP model layers		
affected by the 802.11-		
2020 standard and		
amendments		
amenament	- Frequency bands used by the 802.11 PHYs	
	- Available channels	
Identify and comply with	- Regulatory power constraints	
regulatory domain	- Indoor, outdoor deployments and implementation	
requirements and	variants	
constraints	- Dynamic Frequency Selection (DFS)	
	- Transmit Power Control (TPC)	
Explain basis use sees	- Wireless LAN (WLAN) - BSS and ESS	
Explain basic use case scenarios for 802.11	- Wireless bridging	
wireless networks	- Wireless Peer to peer solutions	
WILEIG22 LIGIMOLKS	- Wireless Mesh	
WLAN Protocols and Devices - 20%		
Describe the components	- Stations (STAs)	
and functions that make up	- Basic Service Set (BSS) (Infrastructure mode)	
an 802.11 wireless service	- SSID	
set	- BSSID	
	- Extended Service Set (ESS)	

Section	Objectives
	- IBSS
	- Distribution System (DS)
	- Distribution System Media (DSM)
Define terminology related	- MSDU, MPDU, PSDU, and PPDU
to the 802.11 MAC and	- A-MSDU and A-MPDU
PHY	
	- PHY preamble and header - MAC frame format
Identify and explain the MAC frame format	
	- MAC addressing
Identify and explain the	- Management
purpose of the three main	- Control
802.11 frame types	- Data
	- Scanning (active and passive)
Explain the process used	- 802.11 Authentication
to locate and connect to a	- 802.11 Open System Authentication
WLAN	- 802.11 Association
	- BSS selection
	- Connecting to hidden SSIDs
	- DCF
	- EDCA
Explain 802.11 channel	- RTS/CTS
access methods	- CTS-to-Self
access methods	- NAV
	 Interframe spaces (SIFS, DIFS, EIFS, AIFS)
	- Physical carrier sense and virtual carrier sense
Explain 802.11 MAC	- Roaming
operations	 Power save modes and frame buffering
operations	- Protection mechanisms
Describe features of,	- Access Points (APs)
select, and install WLAN	- WLAN controllers
devices, control, and	- Wireless network management systems
	- Wireless bridge and mesh APs
management systems	Client devices
WLAN Networ	k Architecture and Design Concepts - 15%
	- Power Source Equipment
	- Powered Device
Describe and implement	- Midspan and endpoint PSEs
Power over Ethernet (PoE)	- Power classes to include power differences between
` ′	PSE and PD
	- Power budgets and powered port density
Define and describe	- Centralized data forwarding
differences, advantages	- Distributed data forwarding
and constraints of the	- Control, Management and Data planes
different wireless LAN	- Scalability and availability solutions
architectures	- Tunneling, QoS and VLANs

Section	Objectives
Describe basic design considerations for common deployment scenarios in wireless such as coverage requirements, roaming considerations and throughput.	 Design considerations for data, voice and video Design considerations for specific applications such as location services, high density and guest access/BYOD Design considerations for supporting legacy 802.11 devices
Demonstrate awareness of common proprietary features in wireless networks.	AirTime FairnessBand steeringDynamic power and channel management featuresInternal Wireless architecture communication
Determine and configure required network services supporting the wireless network	 DHCP for client addressing, AP addressing and/or controller discovery DNS for address resolution for clients and APs Time synchronization protocols (e.g. NTP, SNTP) VLANs for segmentation Authentication services (e.g. RADIUS, LDAP) Access Control Lists for segmentation Wired network capacity requirements
V	VLAN Network Security - 10%
Identify weak security options that should not be used in enterprise WLANs	 WEP 802.11 Shared Key authentication SSID hiding as a security mechanism MAC filtering Use of deprecated security methods (e.g. WPA and/or WPA2 with TKIP)
Identify and configure effective security mechanisms for enterprise WLANs	 Application of AES for encryption and integrity WPA2-Personal including limitations and best practices for pre-shared (PSK) use WPA2-Enterprise -configuring wireless networks to use 802.1X including connecting to RADIUS servers and appropriate EAP methods
Understand basic concepts of WPA3 and Opportunistic Wireless Encryption (OWE) and enhancements over WPA2 Describe common security	 - Understand basic security enhancements in WPA3 vs. WPA2 - Understand basic security enhancements of encryption and integrity in WPA3 - Simultaneous Authentication of Equals (SAE) in WPA3 as an enhancement for legacy pre-shared key technology - Opportunistic Wireless Encryption (OWE) for public and guest networks - Access control solutions
options and tools used in wireless networks	- Protected management frames - Fast Secure Roaming methods

Section	Objectives
	 Wireless Intrusion Prevention System (WIPS) and/or rogue AP detection
	- Protocol and spectrum analyzers
	- Best practices in secure management protocols
RF Vali	dation and WLAN remediation - 10%
Verify and document that design requirements are met including coverage, throughput, roaming, and connectivity with a postimplementation validation survey.	
Locate and identify sources of RF interference	 Identify RF disruption from 802.11 wireless devices including contention vs. interference and causes/sources of both including co-channel contention (CCC), overlapping channels, and 802.11 wireless device proximity. Identify sources of RF interference from non-802.11 wireless devices based on the investigation of airtime and frequency utilization Understand interference mitigation options including removal of interference source or change of wireless channel usage
Perform application testing to validate WLAN performance	- Network and service availability - VoIP testing - Real-time application testing - Throughput testing
Understand and use the basic features of validation tools	 Use of throughput testers for validation tasks Use of wireless validation software (survey software and wireless scanners) Use of protocol analyzers for validation tasks Use of spectrum analyzers for validation tasks
Describe and apply common troubleshooting tools used in WLANs	 Use of protocol analyzers for troubleshooting tasks Use of spectrum analyzers for identifying sources of interference Use of management, monitoring, and logging systems for troubleshooting task Use of wireless LAN scanners for troubleshooting tasks
Identify and troubleshoot common wireless issues	 Identify causes of insufficient throughput in the wireless distribution system including LAN port speed/duplex misconfigurations, insufficient PoE budget, and insufficient Internet or WAN bandwidth Identify and solve RF interference using spectrum analyzers

Section	Objectives
	 Identify wireless performance issues using SNR, retransmissions, and airtime utilization statistics Identify causes of wireless issues related to network services including DHCP, DNS, and time protocols including using native interface and IP configuration tools Identify wireless issues related to security configuration mismatches Identify hidden node issues

CWNP CWNA-109 Sample Questions:

Question: 1

What wireless security solutions are defined by Wi-Fi Protected Access?

- a) Passphrase authentication
- b) LEAP
- c) TKIP/RC4
- d) Dynamic WEP

Answer: a, c

Question: 2

Semidirectional antennas are often used for which of the following purposes?

- a) Providing short-distance point-to-point communications
- b) Providing long-distance point-to-point communications
- c) Providing unidirectional coverage from an access point to clients in an indoor environment
- d) Reducing reflections and the negative effects of multipath

Answer: a, c, d

Question: 3

Which of the following are examples of mobile office networking?

- a) Construction-site offices
- b) Temporary disaster-assistance office
- c) Remote sales office
- d) Temporary classrooms

Answer: a, b, d

Question: 4

Which of the following statements are true?

- a) When upfade occurs, the final received signal will be stronger than the original transmitted signal.
- b) When downfade occurs, the final received signal will never be stronger than the original transmitted signal.
- c) When upfade occurs, the final received signal will never be stronger than the original transmitted signal.
- d) When downfade occurs, the final received signal will be stronger than the original transmitted signal.

Answer: b, c

Ouestion: 5

In the U-NII-1 band, what is the center frequency of channel 40?

- a) 5.2 GHz
- b) 5.4 GHz
- c) 5.8 GHz
- d) 5.140 GHz

Answer: a

Question: 6

What is the maximum power used by a PD Class 0 device?

- a) 3.84 W
- b) 6.49 W
- c) 12.95 W
- d) 15.4 W

Answer: c

Question: 7

The ratio between the maximum peak voltage and minimum voltage on a line is known as what?

- a) Signal flux
- b) Return loss
- c) VSWR
- d) Signal incidents

Answer: c

Question: 8

What organization ensures interoperability of WLAN products?

- a) IEEE
- b) ITU-R
- c) ISO
- d) Wi-Fi Alliance
- e) FCC

Answer: d

Question: 9

What are some of the negative effects of layer 2 retransmissions?

- a) Decreased range
- b) Excessive MAC sublayer overhead
- c) Decreased latency
- d) Increased latency
- e) Jitter

Answer: b, d, e

Question: 10

Which of these encryption technologies have been cracked?

- a) 64-bit WEP
- b) TKIP/RC4
- c) CCMP/AES
- d) 128-bit WEP
- e) Wired Equivalent Privacy

Answer: a, d, e

Study Guide to Crack CWNP Wi-Fi Admin CWNA-109 Exam:

Getting details of the CWNA-109 syllabus, is the first step of a study plan.
 This pdf is going to be of ultimate help. Completion of the syllabus is must to pass the CWNA-109 exam.

- Making a schedule is vital. A structured method of preparation leads to success. A candidate must plan his schedule and follow it rigorously to attain success.
- Joining the CWNP provided training for CWNA-109 exam could be of much help. If there is specific training for the exam, you can discover it from the link above.
- Read from the CWNA-109 sample questions to gain your idea about the actual exam questions. In this PDF useful sample questions are provided to make your exam preparation easy.
- Practicing on CWNA-109 practice tests is must. Continuous practice will make you an expert in all syllabus areas.

Reliable Online Practice Test for CWNA-109 Certification

Make NWExam.com your best friend during your Wireless Network Administrator exam preparation. We provide authentic practice tests for the CWNA-109 exam. Experts design these online practice tests, so we can offer you an exclusive experience of taking the actual CWNA-109 exam. We guarantee you 100% success in your first exam attempt if you continue practicing regularly. Don't bother if you don't get 100% marks in initial practice exam attempts. Just utilize the result section to know your strengths and weaknesses and prepare according to that until you get 100% with our practice tests. Our evaluation makes you confident, and you can score high in the CWNA-109 exam.

Start Online practice of CWNA-109 Exam by visiting URL

https://www.nwexam.com/cwnp/cwna-109-cwnp-wireless-networkadministrator-cwna